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1. 

A Formal Theory of Cubical Complexes 

Summary 

I. Finishing touches were put to the Multiple Output Minimi- 

zation algorithm MOM, for logic circuits of two levels; 

although additional improvements to the APL program will be 

made. A paper on MOM has been accepted for presentation at the 

Hawaii International Conference on System Sciences January 1969. 

11. Work has continued on the development of F-notation, a 

high-level language for the description of algorithms and 

programs. A formal syntax for the F-notation has been de- 

veloped, which enables one to contrast this language with e.g. 

LISP. 

111. An algorithm and APL program have been developed for the 

diagnosis of failures of cyclic logic circuits, termed the 

C-algorithm or C-alg. The C-algorithm is a generalization of 

the D-algorithm, which worked for acyclic circuits. The run- 

ning time of C-alg is very satisfactory: 

sharing system, based on a S/360  mod 50, we have been able to 

compute tests for failures in actual logic circuits of about 50 

blocks within less than a minute (including time for simulating 

the test); furthermore running time appears to be strikingly 

independent of size. Running time does seem indeed to increase 

with size but, because of certain features of the algorithm (a 

plunge" of the D-chain to a Primary Output PO is made rather 

than an orderly march of all ends of a D-chain to the PO'S as 

in the APL time- 

?I 
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in the D-algorithm), the number of logical blocks does not 

seem to be a very significant parameter. 

is rather measured in terms of the "interwovenness" of the 

loops of the circuit. The C-algorithm seems assured of. 

practical usage. 

"C-alg complexity"' 

The number of single stuck-at-1, stuck-at-0 failures is 

twice the number of lines of the circuit whereas the number of 

multiple failures, due to a variety of physical phenomena such 

as cracks, is very much larger. 

compute a set of tests, fairly close to a minimum, which tests 

all stuck failures such that, with high probability, it also 

tests all multiple failures, of a given general category. 

A strategy has been devised to 

An F-program of C-alg is included in this report. 
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I. 

Logic Circuits. 

The Multiple Output Minimization Algorithm MOM for 2-Level 

Work on MOM was mostly done during the last period 

[RWLP 68). 

and accepted for presentation at the Hawaii International Sym- 

posium on System Sciences January 1969. 

included in this report as appendix A. In particular it in- 

A paper summarizing this work [RWL 691 was prepared 

This summary is 

cludes new and much simplified characterizations of the notions 

of singular complex and the set Z of prime singular cubes. 

An improved #-algorithm for computing the prime singular 

cubes has been developed, which will be incorporated in the 

APL program MOM. 

its running time and space requirements. 

This improvement should significantly improve 

Essentially the com- 

putation is' made to be iterative rather than recursive. 

11. Development on F-Notation 

1.. A formal syntax. Two approaches to the representation of 

algorithms for switching theory were employed earlier in this 

project: the calculus of a-objects and F-notation. Consider- 

able effort and progress are being made to join these two 

representations with the goal of producing a very general, 

powerful, convenient and well-founded "language" for writing 

algorithms. 
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A s  presented earlier the wobject calculus was precise 

The F- and formal but was neither easy to use nor concise. 

notation, on the other hand, was easy to use and concise but it 

was neither precise nor formal. Present efforts are directed 

toward combining the best of both approaches. In particular 

we are employing a (formalized) version of the syntax of the 

original F-notation and we are employing an extended version of 

the a-object calculus to provide precise, formal semantics to 

go with this syntax. 

of the F-notation. 

The result will be the "official" version 

We believe that this "language" will be of 

great aid in accurately and concisely describing switching 

theory algorithms in a manner which will both make them easy to 

understand, easy to program, and easily accessible for mathe-.: 

matical study and verification. At the same time this 
1 

language" should also be useful in a wide variety of other 11 

disciplines--any discipline, in fact, in which it is necessary 

to describe algorithms which manipulate strings, lists, (finite) 

sets, tuples, etc. . 
Work on the development of this formalized F-notation has 

progressed to the point where we have begun the writing of a 

report on the formal syntax and semantics of the language. We 

plan to embed this report in a larger report which will contain 

examples of the application of the language both to specific 

switching theory algorithms and, as in our earlier paper on the 

a-object calculus, to building up the fundamental data 
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s t r u c t u r e s  of switching theory. 

W e  a l so  a n t i c i p a t e  including a sec t ion  on var ious  informal 

modifications of t h e  language which f a c i l i t a t e  t h e  wr i t ing  of 

algorithms i n  d i s c i p l i n e s  i n  which the  usua l  informal nota t ion  

is  not t h e  same as t h a t  of F-notation (e.g. i n  formal 

F-notation we use p r e f i x  nota t ion  while i n  a r i t hme t i c  one 

genera l ly  uses i n f i x  no ta t ion  (i.e.,  using i n f i x  nota t ion  we 

w r i t e  "a+b" while i n  p r e f i x  no ta t ion  t h i s  would be w r i t t e n  

"+(a, b) ' I )  ) . 
111. Logic Tes t ing  

Most l o g i c  c i r c u i t s ,  as developed on cards,  e t c . ,  as p a r t  

of a computer o r  e l e c t r o n i c  system using in t eg ra t ed  c i r c u i t s  

are cyc l i c ,  t h a t  is, have feedback. To d a t e  p r a c t i c a l  

algorithms f o r  computing tests t o  d e t e c t  f a i l u r e s  of l o g i c  

c i r c u i t s  have been r e s t r i c t e d  t o  acyc l i c  c i r c u i t s .  

been a b l e  t o  extend t h e  D-algorithm t o  compute tests f o r  c y c l i c  

W e  have 

c i r c u i t s ,  t h i s  algorithm has been programed i n  APL and i t s  

e f f i c i ency  and failure-coverage appear t o  be s a t i s f a c t o r y .  A 

desc r ip t ion  of t h e  problem, previous r e s u l t s ,  t h e  new algorithm, 

termed t h e  C-algorithm, examples of t he  workings thereof and 

new problems w i l l  now be given. 
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INTRODUCTION: A heuristic algorithm C-alg for the computa- 

tion of tests for failures in sequential or cyclic circuits 

is described. 3 
which for combinational circuits computes tests for failures 

if they exist. First the problem is described. A logic 

circuit S is formed by interconnection of combinational 

logic blocks (like NOR or NAND). 

one of its logic blocks has experienced a failure, the 

problem is to find a test T consisting of a sequence of 
input patterns to the primary inputs of S such that for the 
corresponding sequence of output patterns, there is a dif- 

ference between the correct output and the output for the 
failing circuit. Illustrations of the operations of the D 

and C-algorithms are given. 

the models used in the.C-algorithm are described. 

high-level description of the C-algorithm is given in 
F-notation, an algorithmic language. Finally brief comments 

are made concerning the efficiency of an APL version of the 
algorithm. 

It is an extension of the D-algorithm [ 

Given S and given that 

Next a formal description of 

Then a 
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1, Description of Problem 

A logic circuit 5 is formed from combinational 
logic blocks, like NOR'S, NAND's, OR's, AND's, by inter- 
connecting a set of these blocks together by identification 
of inputs of one with outputs of others, in arbitrary 
fashion. 

Given a logic circuit S and given that one of its 

logic blocks has experienced a failure F in some prescribed 

manner, the problem is to find a test T consisting of a 
sequence of input patterns such that for the corresponding 
sequence of output patterns there is a difference between 

the correct output and the output of the failing circuit. 

First we will illustrate the D-algorithm which 
computes a test for combinational (acyclic) circuits. 

2. Illustratipn of D-Algorithm 

The basis for the algorithm for diagnosis of cyclic 
(or sequential) circuits is the D-algorithm version I1 as 

described in [ 11 for acyclic (combinational) circuits. We 

briefly recapitulate a slight extension of this via an ex- 
ample. First let us consider an individual logic block, a 

NOR block denoted N with its input and output lines labeled 

8 ,  9, 10, 11 as shown in Fig. 1. 

0 0  0 1 1  

\. 

Figure 1 - A NOR Circuit and its Logical Description 
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The l o g i c a l  desc r ip t ion  of i t s  behavior is depicted by the  

t a b l e  on the  r i g h t  s i d e  of Fig. 1 t h e  f i r s t  row ind ica t ing  

f o r  example t h a t  when l i n e  8 is 1, output l i n e  11 is  0, 

r ega rd le s s  of t h e  va lue  of t h e  o the r  input  l i n e s .  

t he  c i r c u i t  of Fig. 1 is  embedded i n  the  l o g i c  c i r c u i t  of 

Fig. 2. 

Suppose 

Figure 2 - I l l u s t r a t i o n  of Operation of D-Algorithm 

and assume t h a t  l i n e  11 has f a i l e d  by being stuck-at-0. This 

is denoted by ass igning  the  va lue  D (D f o r  "diagnose") t o  l i n e  

11. Here D is  t o  be thought of as a v a r i a b l e  d is t inguish ing  

between the  case of t h e  occurrence o r  non-occurrence of t h i s  

f a i l u r e .  

when D = 0, i t  has occurred. 

cube tc  

When D = 1 t h i s  p a r t i c u l a r  f a i l u r e  has not occurred; 

One def ines  i n i t i a l l y  a test  

cons i s t ing  of x ' s  i n  a l l  coordinates except l i n e  11, 

XXXXXXXXXXDXXX. 
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The x ' s  i n d i c a t e  t h a t  no conditions have been y e t  imposed upon 

these  l ines .  

12, 13 t o  l i n e  11. 

(D-drive) t h e  D t o  a primary output (here l i n e  14).  I n  our 

program (DBLG 111) l i n e  13 is  chosen. I n  order t o  allow t h e  

"D-chain" t o  propagate through block 13, a 0 must be imposed 

on l i n e  10 and i f  t h i s  is  done then l i n e  13 is assigned t h e  

value 5 which means, 'under these  conditions t h a t  l i n e  10 is  a 

0, t h a t  I> = 1 i f  l i n e  11 is stuck-at-0 and 5 = 0 otherwise 

Blocks 11 and 13  are t o  be  thought of as 'ID-chained" together.  

The " a c t i v i t y  vector" A c o n s i s t s  of t he  successors 

One of these  l i n e s  must be chosen to  "drive" 

I n  order t o  be s u r e  t h a t  l i n e  10 is 0 e i t h e r  Pine 6 o r  l i n e  7 

must be assigned t h e  va lue  1 but t h i s  dec is ion  is not  made a t  

t h i s  p a r t  of t h e  algorithm, c a l l e d  D-drive. The a c t i v i t y  

vec tor  now becomes 12, 14, 

Again t h e  l as t  one is chosen, and i n  order t o  d r i v e  t h e  5 
through t h i s  block l i n e  12 must be made an 0, y ie ld ing  a D on 

l i n e  14,  y i e ld ing  the test cube: 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  

t c  = x x x x x x x x x 0 D 0 ~ D  

The subalgorithm D-drive has now reached a primary output,  

l i n e  14, and thus D-drive terminates.  The next subalgorithm 

t o  be executed i s  c a l l e d  "consistency" o r  CDRIVE; i n  t h i s  sub- 

algorithm i n t e r n a l  l i n e s ,  here 10  and 1 2 ,  which have been 

assigned values,  are " j u s t i f i e d "  by s u i t a b l e  choice of s i g n a l s  

on primary input  l i n e s .  

primary input  l i n e  1 t o  t h e  va lue  1. 

For l i n e  12 t o  be a 0, w e  ass ign  
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As for l i n e  10 being 0, t h i s  may be achieved by l i n e  6 (or 

l i n e  7 o r  both) being assigned the  value 1. 

then cons i s t s  of :  

The "test cube" 

1 2 3 4 5 6 7 8 9 10 1 1 1 2  13 14 

t c  = l x x x x l x x x O D O D D  - 

Fina l ly  l i n e  11 being maintained a t  a D means t h a t  i n  the 

"good" c i r c u i t  e i t h e r  l i n e  8 o r  9 must be assigned the  value 

1 (so  t h a t  11 w i l l  be 0 i n  t h e  good c i r c u i t ) :  

8 .  Fina l ly ,  l i n e  8 has the  value 1 only when both input  l i n e s  

4 and 5 are 0. Thus the  f i n a l  test cube is: 

we choose l i n e  

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  

t c  = l x x O O l x x x O D O ~ D  

Since l i nes  1 through 7 are primary inputs  t he  ac tua l  test  

pa t t e rn  is defined by: 

1 2 3 4 5 6 7  

1 x x o o 1 x  

Here the  x ' s  may be assigned a r b i t r a r y  values,  independent of 

each other ;  thus t h e  test cube ac tua l ly  prescr ibes  8 individ- 

u a l  tests for t h i s  f a i l u r e .  

This summary does not cover the  complexities of t h e  D-algorithm 

as it ac tua l ly  exists i n  D-ALG i n  the  APL implementation. 

Elaborate t racking procedures and decision-making machinery 

are involved. 

the  combinational diagnosis problem i n  t h a t  i f  a test e x i s t s  

i t  is  proven t h a t  t h e  D-algorithm w i l l  a c tua l ly  compute one. 

Furthermore the  D-algorithm ac tua l ly  solves  
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3. Illustration of C-Algorithm 

We now extend the D-algorithm approach to the sequential case. 

Before giving a formal description of the cyclic diagnosis 
algorithm, we will discuss an example illustrating the work- 

ings of the algorithm. 

D-propagation. Consider the circuit shown in Fig. 3 ,  consist- 

Figure 3 - D-Propagation in a Sequential Circuit. 

ing of five logical blocks, two ANDS, two NORs, and an OR 

interconnected as shown. 

as shown, the four primary inputs being labeled 1, 2, 3 ,  4 .  

Assume in this circuit that the failure under consideration 

is line 5 stuck at 0. A D is associated with this line and 
the first: task is to "propagate" this D to a primary output, 

which is possible in this case. 

block with output line 7, line 9 must be placed in the value 
0 (this w i l l  be later on justified in the consistency oper- 

ation). 

primary output so that the D-drive (or D-propagation) ceases 

operation. 

The lines are labeled with integers 

To "get through" the NOR 

This line 7 assumes the value - D and line 8 is a 
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Consistency. W e  must now j u s t i f y  the  imposition of the  

s i g n a l s  on l i n e s  9 and 6, i n  a previous t i m e  frame. For l i n e  

9 t o  have t h e  va lue  0 i t  i s  necessary t h a t  t h e  value of t h e  

input  t o  t h i s  block, l i n e  8, should be 1. (This, however, is  

c l e a r l y  not an  inconsistency, as i t  would be i n  t h e  combin- 

a t i o n a l  case, but t h e  proper i n t e r p r e t a t i o n  is  t h a t  one of 

t he  s i g n a l s  occur i n  .a "previous" t i m e  frame.) We circle t h i s  

@ i n  the  diagram t o  i n d i c a t e  t h a t  i t  occurs i n  t h e  p a s t  i n  

This may be achieved by l i n e  6 having t h e  value 1 Fig. 4 .  

(avoiding the  feedback loop) which i n  tu rn  would r equ i r e  t h a t  

both l i n e s  3 and 4 also have the  value 1. F i n a l l y  the  value D 

on l i n e  5 ( ind ica t ing  t h a t  l i n e  5 i s  stuck-at-0) is  maintained 

by having l i n e s  1 and 2 a t  values 1 i n  t h e  present  t i m e  frame. 

I n  Fig. 4 t h e  values t h a t  were imposed i n  t h e  previous t i m e  

frame are enc i rc led .  Thus the  test ,  thus f a r  generated, using 

two t i m e  frames is: 

1 2 3 4 5 6 7 8 9  

P r i o r  Time Frame x x l l x l x x x  

Present T i m e  Frame .1 1 0 x - D 0 - D D 0 

W e  now t ake  t h e  primary input coordinates 1, 2, 3, 4 and "uni- 

formize" them i n  t h e  following fashion: 

xxll 1111 

ll0X 1101 

For a l l  l i n e s  €o r  which i n  one t i m e  frame t h e  value is  c = 1 

o r  0 and t h e  o the r  i s  x w e  change x t o  t h i s  common va lue  ( to  

avoid races and hazards).  

t h a t  it is a v a l i d  test. 

how t h e  C-algorithm works. 

a combinational i terative model. W e  ob ta in  t h i s  model by f i r s t  

c u t t i n g  the  feedback loops t o  render the  c i r c u i t  acyc l ic .  Then 

as many copies of t h i s  c i r c u i t  are produced as is des i red ,  one 

copy f o r  each t i m e  frame; the  pseudo-output of the  i t h  cu t  l i n e  

I f  we simulate t h e  test we  can v e r i f y  

This is one i n t u i t i v e  explanation of 

W e  now ob ta in  t h e  same test using 
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Ir I Q  
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.rl 
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in the jth time frame joined to the pseudo-input of the ith 

line in the (j 4- 1 ) s t  time frame. 

Thus cutting the feedback loop labeled 9 in Fig. 3 and making 

two copies of it and joining as described, we get the combin- 
ational iterative model shown in Fig. 5. Here the nodes 

corresponding to the first time frame are labeled 1 through 9, 
with 9 
frame; the nodes corresponding to the next time frame are 1' 
through 9'. 

the label for the pseudo-input from a prior time 0 

We have thereby transformed the sequential or cyclic circuit 

diagnosis problem into a combinational. or acyclic diagnosis 
problem with particular side conditions. One of these is 

that line 9 must remain at value x, that is, the test 

0' being developed cannot use any information from line 9 
Furthermore the single failure of line 5 in the original cir- 

0 

cuit becomes in the iterative model a double failure of lines 

5 and 5" Also line 3 cannot be "read" as a PO. 

A test is computed in this model in the following way: In 

order to generate the D on line 5' primary inputs 1' and 2' 
are set at value 1. To initiate the D-DRIVE, this D "passes 

through" NOR-block 7' by requiring that line 9 be given the 

value 0 (to be justified in the consistency part of the 

algorithm). Thus a 5 is attached to line 7' to go through 
block 8 ' ,  which is a primary output so that the D-DRIVE ceases. 

The consistency part of the algorithm then requires that line 
6' set equal to 0 be justified and this is arbitrarily done by 

setting primary input line 3' equal to 0. It is then recorded 
that another choice could still be made to achieve this 
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r e s u l t .  

is done by s e t t i n g  l i n e  8 equal t o  1 which i n  tu rn  is  j u s t -  

i f i e d  by ass igning  l i n e  6 equal t o  1 which is j u s t i f i e d  by 

making both primary inpu t s  3 and 4 equal t o  1, completing t h e  

test cube. We now have: 

Next l i n e  9 set equal t o  0 must be j u s t i f i e d .  This 

1 2 3 4 5 6 7 8 9  

X X X l l X l X l O  

1' 2' 3' 4' 5' 6 '  7 '  8'  9' 
1 l O X D O D D D  

- - -  

W e  then complete t h i s  test by "eliminating" t h e  x's on the  

primary input  p a t t e r n s  t o  0 ' s  and 1's attempting t o  minimize 

changes from one t i m e  p a t t e r n  t o  t h e  next. 

I f  we now r e i n t e r p r e t  t h e  obtained input  p a t t e r n  C 

sequence : 

as a e' 

1235 

1111 

1101 

of two input  p a t t e r n s  on S ,  we f i n d  t h e  same test  we have 

a l ready  obtained. 



4 .  Formal Description of Models Used i n  C-Algorithm 

W e  are given a Sequential  c i r c u i t  S ,  as described i n  sec t ion  1. 

By means of a program [DPR], we select out  certain l i n e s  as 

feedback loops i n  a "natural" manner so  t h a t  t h e i r  c u t t i n g  

renders t he  c i r c u i t  acyc l i c .  The terminus of each c u t  l i n e  

poin t ing  toward t h e  c u t  is  termed a pseudo-output; those lead- 

ing  away, pseudo-inputs; the  sets of these  l i n e s  are denoted 

r e spec t ive ly  SO and S I .  Thus a combinational c i r c u i t  C i s  

obtained as shown on the  two top r i g h t  diagrams of Fig. 7, 

The primary inpu t s  P I  of S i t s e l f  and pseudo-inputs S I  con- 

s t i t u t e  the  primary inpu t s  of C. The primary outputs PO of 

S itself and t h e  pseudo-outputs SO c o n s t i t u t e  t he  primary out- 

p u t s  of C. n we  

make n copies of C and j o i n  t h e  appropr ia te  pseudo-inputs of 

t he  i t h  t o  the  pseudo-outputs of t he  i + 1) st ,  t o  form t h e  

iterative combinational c i r c u i t  C as shown i n  the  center  of 

Fig. 7 .  

Now i f  we wish t o  compute a test of length  

e 

This model as can e a s i l y  be seen i s  isomorphic with the  sequen- 

t i a l  c i r c u i t  S' shown a t  t h e  bottom of Fig. 5 wherein a u n i t  

delay A t  is  i n s e r t e d  i n  each of t h e  s p e c i a l l y  se l ec t ed  feed- 

back loops with no delay assoc ia ted  with the  combinational 

p a r t  of t h e  c i r c u i t  and the  n input  changes are separated i n  

t i m e  by t h e  amount A t .  H e r e  i s  assoc ia ted  a sequence of n 

primary input  p a t t e r n s  and n corresponding output p a t t e r n s  

produced by a sequen t i a l  operation of S ' .  
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In  C 

f a i l u r e  is not t r ans i en t ) .  Thus t o  a s ing le  f a i l u r e  i n  S 

corresponds a mul t ip le  f a i l u r e  i n  the  i terative acyc l i c  model 

. Fig. 6 dep ic t s  t h i s  correspondence, drawing a t t e n t i o n  ‘e 
a l s o  t o  the  f a c t  t h a t  no values  0 o r  1 may be assigned to  the  

pseudo-inputs SI of the  f i r s t  copy of C i n  C . I n  other  words 

i n  developing a test w e  can never assume a p a r t i c u l a r  value 

on the pseudo-inputs f o r  the  f i r s t  copy of t he  c i r c u i t  i n  Ce 
and l ikewise no value can be encorporated from the  pseudo- 

outputs  of the  l as t  one. 

there w i l l  be a f a i l u r e  i n  every copy (assuming t h a t  the  e 

e 
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I V .  F-Notational Description of t h e  C-Algorithm. 

I n  t h i s  s e c t i o n  we descr ibe  t h e  C-algorithm i n  (a s e m i -  

informal ve r s ion  o f )  t h e  F-notation F / I .  

given i n  a series of levels--the higher (earlier) levels 

The desc r ip t ion  is 

giving t h e  o v e r a l l  s t r u c t u r e  of t h e  algorithm, the  lower 

( l a t e r )  l e v e l s  g iv ing  increas ing  amounts of d e t a i l .  The des- 

c r i p t i o n  is not given i n  complete d e t a i l ,  t h a t  is, we  do not 

spec i fy  how t h e  d a t a  ob jec t s  are t o  be represented nor do we 

p rec i se ly  de f ine  t h e  p r imi t ive  operations.  What we  have 

attempted t o  do is t o  ca r ry  t h e  desc r ip t ion  down t o  t h e  level 

j u s t  above t h a t  a t  which s p e c i f i c  choices of no ta t ion  and 

implementation must be made. That i s ,  we have t r i e d  t o  give 

t h e  bas i c  s t r u c t u r e  of t h e  algorithm (what must be done) while 

avoiding f i x i n g  on a p a r t i c u l a r  way of doing something t h a t  

might be done i n  several ways. W e  do not c l a i m ,  of course, 

t h a t  t h e  desc r ip t ion  given here  is  t h e  only poss ib le  descrip- 

t i o n  of t h e  algorithm i n  F/1, bu t  only t h a t  w e  have l a rge ly  

avoided a r b i t r a r y  d e t a i l .  Perhaps t h e  most s i g n i f i c a n t  example 

of t h e  use of high l e v e l  desc r ip t ion  i n  t h i s  presenta t ion  i n  

order t o  avoid a r b i t r a r y  d e t a i l  i s  t h e  handling of t h e  "tree 

search" p a r t  of t h e  algorithm. Rather than spec i fy  p rec i se ly  

how t h e  tree search  is t o  be handled we have merely ind ica ted  

one, what information is  re l evan t  t o  t h e  tree search and two, 

when and where i n  t h e  algorithm t h i s  information i s  employed t o  

make dec is ions  as t o  what t o  do next. This is  done l a rge ly  
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by means of naming a "repository" for the information (denoted 

variously by the variables: bl, bl', blone, newbl, etc. as 

appropriate) and by indicating the operations which feed, 

update, and extract data from this repository. 

The main meat of the algorithm is given in the first three 

levels of description (and primarily in the third level). How- 

ever one critical algorithm, a, which appears for the first 
time at the third level is further described at the fourth and 

fifth levels. 

The written description which accompanies the F-algorithms 

is purely informal and is presented in order to explicate the 

intention behind the formal F-algorithms. In principle all 

that is required to make the algorithm completely rigorous is a 

precise definition for each of the primitive-algorithms (or 

functions) and the primitive arguments. Our claim is that that 

could be done in many different, reasonably straightforward, 

ways to produce a complete algorithm which would indeed be an 

algorithm for solving the sequential diagnosis problem dis- 

cussed earlier in this report. 

1st Level Description: 

[ t = calg(s, f, pmax) 

(vl = f om-acyclic-cir cuit ( s  , f , pmax) ) 
( t = f ind-test (v,)) 1 

The above formula says that the algorithm calg has three 

arguments: a sequential (cyclic)' circuit s ,  a failure f in 



3 ,  

that circuit, and a bound pmax on the number of time frames 

which may be employed in finding the test. 

ment says that these arguments are employed to form a acyclic 

circuit from s (by cutting feedback lines) and the second state- 

ment says that this result is then to be used to find a test. 

This is, of course, a very high level description and as such 

indicates very little about the algorithm. 

2nd Level Description: 

The first state- 

[ t "  

(ac = 

(t' 

[ t =  

- (vl - 

(vl - 

(v2 - 
(v2 - 

- 

- 
- 

( t "  

form-acyclic-circuit(s, f, pmax) E 

cut (SI 1 

( s ,  f, Pm=, 0, 0, ac))l 

find-test(s, f, pmax, p, q, ac) E 

form-acyclic--circuit-chain(s, f, pmax, p, q, ac)) 

NO-ACC I t = NOTEST) 

1 drive-to-form-test (v )) 

CANT-DRIVE I t = NOTEST) 

simulate-test (v,)) 1 

each 

This second level description consists of two formulas 

explicating one of the two statements of the first level 

description. 

The first formula describes the algorithm, form-acyclic- 

circuit. The first statement in this algorithm forms an 

acyclic circuit denoted - ac from the sequential circuit by em- 

ploying an algorithm called - cut (which cuts the feedback lines 

in s ) .  [We do not give any details on the algorithm cut since - 
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many different choices of algorithm would suffice.] The 

second statement indicates the output oE this algocithm--namely 

it says that the result v indicated in the first level des- 

cription will be a sixtuple as indicated (and from the first 

1 

level description we know that this sixtuple will be the input 

to the subalgorithm find-test). 

The second formula describes the algorithm find-test. The 

first step (first statement) is to form a chain of p + q + 1 
copies of the acyclic circuit - ac. 

this step will produce the result NO-ACC. 

duced then the overall result is that there is NO-TEST. However 

if the chain is produced then the algorithm drive-to-form-test 

is applied to it to produce a candidate for a test. If no test 

can be found then the output of this subalgorithm is CANT-DRIVE 

and the overall result of the formula is again NO-TEST. 

if a candidate is found then it is checked by the sub-algorithm 

simulate-test 

to be done if it is not a valid test is spelled out at the next 

level of description). 

If this cannot be done then 

If NO-ACC is pro- 

However 

to see that it is a valid test (exactly what is 



3rd Level Description: 

{t = form-acyclic-circuit-chain (s, f, 9 PI 4 ,  ac) =- 

(p + g > pmax I t = NO-ACC) 

(ace = iterate (ac, p, q ) )  

(dcf = pdcf (acc, f, p, 4)) 

(bl = record (dcf)) 

( t = ( s ,  f, pmax, P ,  q ,  ac, ace, b1))l 

[t = drive-to-form-test (s,  f, pmax, p, q,  ac, acc, bl)E 

((u, bl') = dalg (acc, bl)) 

(U = NOTEST A(P + q - > pmax). 1 t = CANT-DRIVE) 

((P', q')  = step (P, 4, P m 4 )  

( u = NO TESTA(^ + q < pmax) I 
t = find-test ( s ,  f, pmax, p', q ' ,  ac)) 

( t = (s, f, pmax, p, q ,  ac, acc, u, bl')] 

{t = simulate-test (s, f, pmax, p, q ,  ac, ace, u, bl') E 

( v = sim (s, f, u)) 

( v =  l l t  =u) 

(wl = drive-to-form-test (s,f, pmax, p, q ,  ac, acc, bl') 

= CANT-DRIVE I t = NOTEST) (wl 
( t = simulate-test (w,))] 

The third level description explicates the three subalgo- 

rithms employed in the description of the algorithm find-test. 
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The first formula describes the algorithm, form-acyclic- 

circuit-chain. The description is given completely in terms of 

primitives, that is, functions and algorithms which are not 

furtFer expiicated formally within F/I in this treatment. 

Interpreting the formula we see that if E +  9 > pmax then the 

result is NO-ACC (since this means that the bound, pmax, on the 

number of time frames has been exceeded). If E +  9 5 pmax 

then we go on to the second statement which says that we form 

the acyclic circuit chain, E, using the primitive-algorithm 

iterate which connects together p + q + 1 copies of the 
acyclic circuit - ac. The next step is to apply the primitive- 

algorithm pdcf which is intended to develop the initial infor- 

mation, - dcf, needed to test for the failure _f in - acc, in 

particular this algorithm finds the d-cube of failure associ- 

ated with - f in - acc. Finally the last statement records this 

result in - bl which, as mentioned earlier, serves in this pre- 

sentation as a "repository" of all information needed to con- 

trol the flow of the algorithms. The result of the algorithm 

is then the indicated 8-tuple. 

The second formula in the third level description des- 

cribes the algorithm drive-to-form-test. 

in this algorithm employs the algorithm dalg (described at the 

The first statement 

fourth and fifth levels in this treatment) to try to form a 

test - u and to record the steps taken in that process as - bl'. 

If no test can be found then dalg will put out the result 
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NOTEST. 

time frames has  been reached then the  r e s u l t  of t he  algorithm 

is CANT-DRIVE which s i g n i f i e s  t h a t  no test can be found with 

the  given bound. I f  da lg  produces NOTEST but t he  bound pmax 

has not y e t  been reached then new values f o r  p and g are 

chosen by means of t h e  p r imi t ive  algorithm s t e p ,  and the  

(second level) algorithm f i n d - t e s t  is  employed using these  

new va lues  (denoted by p' and 1') of p and 9. 

i f  t he  va lue  of da lg  is  not  of t he  form (NOTEST, - b l ' )  then the  

r e s u l t  of t h e  algorithm is  the  ind ica ted  9-tuple. 

I f  t h i s  happens and the  bound, pmax, on the  number of 

While f i n a l l y ,  

The f i n a l  formula i n  t h e  t h i r d  level desc r ip t ion  descr ibes  

t h e  algorithm c a l l e d  s imula te - tes t .  The f i r s t  s t e p  i n  t h i s  

algorithm is  t o  check out t h e  proposed test - u (developed by 

drive-to-form-test) by means of t h e  p r imi t ive  algorithm - s i m .  

I f  - u is  a v a l i d  tes t  f o r  f a i l u r e  f. i n  s equen t i a l  c i r c u i t  - s then 

- s i m  ( s , f , u )  takes the  value 1. 

of the  algorithm is  thus va l ida t ed ,  test - u. 

test - u is not v a l i d  t h e  algorithm then iterates t o  form another 

proposed test using t h e  above described algorithm drive-to-form- 

test and i t s e l f .  

When t h i s  happens the  r e s u l t  

I f  t he  proposed 

- 
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4 th  Level Description: 

[ (u, b l ' )  = dalg  (acc, b l )  E 

1 (bdrv?(bl) = 1 A conbk? (b l )  = 1 

I (u, b l '  ) = consistency-drive ( t c ( b l ) ,  acc, 

conbk (b 1 )  ) ) 

(bdrv?(bl) = 1 A conbk?(bl) = 0 I (u ,b l ' )  

= (NOTEST, b l ) )  

(vl = select-actives (acc, b l ) )  

= NOTEST I (u, b l ' )  = (NOTEST, b l ) )  (5 
(v2 = drive-to-test-cube (v,)) 

(v2 = NOTEST I (u, b l )  = (NOTEST, b l ) )  

= (NODRIVE, bl") 

= d a l g  (acc, b l" ) )  

I (u, b l ' )  (v2 

(v3 = consistency-drive (v,)) 1 

The fou r th  level desc r ip t ion  given here  presents  a more 

d e t a i l e d  exp l i ca t ion  of t h e  algorithm daLg. It w i l l  be noted 

from looking a t  t he  higher l e v e l  desc r ip t ions  t h a t  t h i s  algo- 

rithm can be entered under a v a r i e t y  of conditions.  I n  p a r t i -  

cu l a r  t h e  d a l g  algorithm may be entered f o r  t he  f i r s t  t i m e ,  o r  

a f t e r  i t  has a l ready  proposed a number of tests which turned 

out not t o  be va l id .  Depending on what has happened before, 

the  algorithm does d i f f e r e n t  things.  Thus the  f i r s t  two state- 

ments i n  t h e  desc r ip t ion  of d a l g  are checks on the  repos i tory  

- b l  t o  see what it should do. The func t ion  brdv? i n  the  f i r s t  
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statement checks to see if the algorithm was last performing a 

"B-drive" (finding appropriate inputs to force the driving of a 

given d to the outputs) if this is the case and if there are 

still alternative ways to try doing the "B-drive" as indicated 

by conbk? (bl) = 1 

employed to try these out using the appropriate information 

from the repository - bl as selected by the primitive-algorithm 

conbk. On the other hand, if the algorithm was last performing 

a "B-drive" bur there are not alternative left to investigate 

(indicated by conbk?(bl) = 0) then the result is (NOTEST, bl) 

indicating that no test can be produced. If though the 

algorithm was not last doing a "B-drive" but is rather doing a 

"D-drive" (trying to drive a d signal from the failure to an 

then the consistency-drive algorithm is 

output) then it will go immediately to the third statement in 

the algorithm. Then, as shown by the fifth level description 

given below, the algorithm will select an active line on which 

to attempt to drive the d signals using the algorithm select- 

actives. If there are no more active lines available the result 

will be NOTEST, otherwise the algorithm drive-to-test-cube is 

employed to drive the d from this active line to an output thus 

forming a test cube. The performance of this subalgorithm will 

result either in the result NOTEST indicating that no test can 

be produced, or in the result NO-DRIVE in which case the con- 

tents of the repository are suitably updated and dalg is 

applied to the resulting new arguments (this happens when there 
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is no way to drive from the particular active line chosen and a 

new active line must be selected), ar finally, the drive may be 

completely successful in which case a test-cube is indeed pro- 

duced and then the consistency-drive algorithm is employed to 

perform the "B-drive" operation. 

5th Level Description: 

[ t = select-actives (acc, bl) E 

(actives = actives (acc, bl)) 

(actives = 0 A dbk?(bl) = 1 

I t = select-actives (acc, dbk(b1))) 

(actives - @ A dbk?(bl) = 0 

1 t = NOTEST) 

(line = select-element-of (actives)) 

(bl" = update-actives-in-bl (bl, actives , line) 
( t = (acc, bl", line))] 

[ t = drive-to-test-cube (acc, bl, line) z 

(ppdc = produce-prim-d-cubes (acc, line, bl)) 

(ppdc = fl I t = (NODRIVE, bl)) 

(pdc = select-an-element-of (ppdc)) 

(newbl = update-ppdc-in-bl (bl, ppdc, pdc, line)) 

(tc' = tc (bl) npdc) 

(tc' = @ 1 t = drive-to-test-cube (ace, newbl, line)) 

(newerbl = update-test-cube-in-bl (newbl, tc', line)) 

(tc'npo (acc) # @ 1 t = Jtc', acc, newerbl) 

(t = (MODRIVE, newerbl) 



[ (u, bl') = consistency-driv (tc, ace, bl) E 

(bltwo = set-bdrv-equal-one (bl) ) 

(b = produce-b(tc, ace, bltwo)) 

(bCpi(acc) I (u, bl') = (tc, bltwo)) 

(inline = select-line-from(b - pi (acc))) 
(new-b = (b - inline) predecessors(inline, acc)) 

(blthree = update-b-in-bl(new-b, bltwo) 

((u,bl) = drive-tc(tc, acc, blthree, inline))] 

[ (u, bl') = drive-tc(tc, acc, bl, inline) 2 

(set-psc = form-primitive-singular-cubes(inline, acc, bl)) 

(set-psc = 0 A conbk?(bl) = 0 1 (u, bl) = dalg(acc, reset(b1))) 

(set-psc = 0 I dalg(acc, conbk(b1)) 

(new-set-psc = (set-psc) - psc) 
(newbl = update-bl-with-psc(b1, psc, new-set-psc)) 

(newtc = tcnpsc ) 

(newtc = 63 I (u, bl) = drive-tc(tc, acc, newbl, inline)) 

(newer-bl = update-bl-with-new-tc(newb1, new-tc)) 

((u, bl) = consistency-drive(new-tc, acc, newer-bl)) 

The fifth level description describes the algorithms 

select-actives, drive-to-test-cube, and consistency-drive in 

terms of primitive-algorithms and algorithms already described 

at a higher level. Note that the algorithm consistency-drive is 

described using two formulas--this allows us to go into greater 

detail without resorting to an additional level of description. 



The first formula describes the algorithm select-actives. 

The first step is to perform the primitive-algorithm actives 

which is intended to find the active lines (outputs of circuit 

elements which have d's on one or more inputs) on which the 

algorithm has not as yet tried to drive the d. (The reason 

that - bl is an argument of actives is that - bl contains the infor- 

mation as to which lines have already been tried). If there are 

no active lines that have not already been tried, (so  that 

actives = a) and if there is a way to "back up" the search (as 
indicated by -- dbk?(bl) = 1) then the algorithm "backs up" and 

computes select-actives(acc -3 -- dbk(b1)). 

not possible to "back up" then the result is NOTEST. 

there are active lines still to be tried then one of these lines 

is selected by the primitive-algorithm select-element-of(actives) 

and the repository - bl 2s updated by the primitive-algorithm 

update-actives-in-bl to indicate that this line has been tried 

and the final output is then the indicated triple. 

If actives = 0 and it is 

However, if 

The algorithm drive-to-test-cube employs the output triple 

of the algorithm select-actives to drive a d to a primary-output 

of - acc along the line line. The first step is to produce the 

primitive d cubes associated with the line line that have not 

already been tried. This is done with the primitive-algorithm 

produee-prim-d-cubes (again, & contains the information as to 

which d-cubes have already been tried). If all the primitive 
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d-cubes assoc ia ted  wi th  l i n e  have a l ready  been t r i e d  (as  indica- 

t ed  by ppdc = @) 

some p r imi t ive  d-cube is se l ec t ed  using the  primitive-algorithm 

select-an-element-of(ppdc). 

t o  record t h i s  s e l e c t i o n  using t h e  primitive-algorithm 

then t h e  r e s u l t  is (NODRIVE, b l ) ;  otherwise 

Next t h e  repos i tory  - b l  is updated 

update-ppdc-in-bl. Then t h e  se l ec t ed  d-cube is in t e r sec t ed  

with t h e  latest  ( p a r t i a l )  test-cube - -  tc(b1) recorded i n  - b l  . 
(Note, t h e  recording of - t c  i n  - b l  w a s  i n i t i a t e d  by t h e  statement 

( b l  - = record(dcf ) )  - i n  t he  t h i r d  l e v e l  desc r ip t ion  of form- 

accyclic-circuit-chain.) I f  t h i s  i n t e r s e c t i o n  ( in t e r f ace )  is  

empty ( i .e. ,  i f  - tc '  = Ib) then t h e  algorithm t r ies  again using 

newbl i n  place of - b l .  

( p a r t i a l )  test-cube is s to red  i n  the  repos i tory  using the  

However i f  - tc'  # 0 then t h i s  new 

primitive-algorithm update-tes t-cube-in-bl. The algorithm then 

checks t o  see i f  t h e  j u s t  produced test-cube d r ives  a l l  t he  way 

t o  t h e  primary outputs  po. I f  t h i s  i s  the  case then t h e  r e s u l t  

is the  ind ica ted  t r i p l e  (which becomes the  input  t o  consistency- 

d r i v e ) ;  while i f  it does not then t h e  r e s u l t  i s  (NODRIVE, 

newerbl) which, (as indica ted  by t h e  fou r th  level  descr ip t ion)  

w i l l  cause r een t ry  of d a l g  with t h e  repos i tory  updated so as t o  

employ t h i s  new ( p a r t i a l )  test-cube. 

The purpose of t he  algorithm consistency-drive is, given 

a test-cube K, t o  a t t e m p t  t o  f ind  a way t o  set t h e  inputs  of 

t he  c i r c u i t  - acc so as t o  r e a l i z e  t h i s  test-cube. I n  t h i s  

algorithm we again use - b l  (and v a r i a n t s  thereon) t o  designate 
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t h e  r epos i to ry  f o r  t h e  information bui ld  up i n  t h e  "tree search" 

f o r  a way t o  set t h e  inpu t s ,  

is t o  record,  i n  bl, t h a t  t h e  algorithm i s  doing t h e  

consistency-drive (see beginning of fou r th  l e v e l  desc r ip t ion  

of da lg) .  

The f i r s t  s t e p  i n  t h e  algorithm 

This is  done by means of a primitive-algorithm 

c a l l e d  set-bdrv-equal-one. The next s t e p  is t o  produce b, the 

c o l l e c t i o n  of l i n e s  which have s i g n a l s  spec i f i ed  on them but 

whose predecessors must now have s i g n a l s  spec i f i ed  by the  

algorithm. 

i f  - b c pi(acc) - then we are done and (E, E') = (&, bltwo). 

Otherwise the  algorithm picks  an element of - b which is not a 

primary input  ( i n  order  t o  attempt t o  set the  c o r r e c t  s i g n a l s  

I f  a l l  the  elements of - b are primary inputs  ( i . e . ,  

on i t s  predecessors t o  br ing  i t  t o  the  spec i f i ed  s t a t e ) .  

t h i s  l i n e ,  c a l l e d  i n l i n e ,  is  chosen we then update the 

repos i tory  t o  record t h i s  s e l ec t ion .  F ina l ly  we apply the  

algorithm dr ive- tc  i n  order t o  set  t h e  values on the  inputs  of 

t he  element which d r i v e s  the  l i n e  i n l i n e .  

When 

The algorithm dr ive- tc  starts by producing the  set of 

p r i m i t i v e  s ingu la r  cubes assoc ia ted  with the  l i n e  in - l ine  what 

have not a l ready  been t r i e d .  I f  this set is empty ( i f  they have 

a l l  been t r i e d )  and t h e r e  is no way t o  continue the  "tree 

search" (as ind ica t ed  by conbk?(bl) - = 0) then t h i s  means t h a t  

t h e r e  is no way t o  set t h e  primary inpu t s  so as t o  r e a l i z e  t h e  

given test-cube. When t h i s  happens the  repos i tory  is reset so 

as t o  s tar t  t h e  algorithm dalg over again t o  f i n d  a new 
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candidate f o r  a test cube ( i n  p a r t i c u l a r  i t  i s  a t  t h i s  po in t  

t h a t  t h e  repos i tory  i s  set so t h a t  bdrv?(bl)  # 1--see d iscuss ion  

of da lg) .  I f ,  on t h e  o the r  hand, t he  set set-psc is empty but 

there are a l t e r n a t i v e s  t o  t r y  on t h e  consistency d r i v e  then the  

p r imi t ive  algorithm conbk(b1) "backs up" t h e  d a t a  i n  the  reposi-  

t o r y  t o  the  appropr ia te  po in t  and d a l g  is  then employed (with 

bdrv? = 1) t o  continue t h e  consistency dr ive .  F ine l ly ,  i f  t he  

set set-psc i s  not empty then the  primitive-algorithm se l ec t -  

element-of(set-psc) chooses an  element of set-psc and updates 

the  r epos i to ry  t o  i n d i c a t e  t h i s  s e l ec t ion .  The se l ec t ed  element 

is  then in t e r f aced  with t h e  e x i s t i n g  test-cube tc  t o  a t t e m p t  - 
t o  form a new test-cube newtc specifying the  s i g n a l s  on l i n e s  

c l o s e r  t o  the  primary inputs.  I f  the  a t t e m p t  i s  unsuccessful 

( i f  - t c  and psc are incompatible) w e  w i l l  g e t  temp,, = P, i n  

which case drive-tc i s  applied t o  t h e  new contents of t he  

r epos i to ry  ( i n  order  t o  t r y  the  remaining members, i f  any, of 

set-psc).  

updated t o  inc lude  t h e  new test cube, newtc, 

a p p l i e s  consistency-drive 

providing input  s i g n a l s  t h a t  w i l l  g ive  rise t o  the  des i red  

test-cube. 

I f  t h e  attempt is successfu l  then the  repos i tory  is 

and the  algorithm 

i n  order t o  complete t h e  process of 
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Appendix A 

An Algorithm and a Program for the 
Multiple-Output 2-Level Logic-Mlnimization Problem 
By J. Paul Roth*, E. G. Wagner* and Leon S. Levy# 
*IBM Research Center, Yorktown Heights, N. Y. 

#IBM Research Center and University of Pennsylvania 

Abstract: An algorithm and program is given for the problem of 

finding a minimum-cost multiple-output logic circuit of two 

levels which realizes a given function mapping strings of 

labelled bits into strings of labelled bits. 

cal problem currently having application to implementation of 

logic circuits in large-scale integration. A notation and 

This is a classi- 

calculus is devised involving singular cubes, covers and com- 

plexes for efficient treatment of the problem. A succinct 

description of the algorithm itself is given in a newly defined 

functional notation, termed the F-notation. A computer program 

for this algorithm following the "F-description" has been 

written for the IBM System/360 APL interactive system. 

1. Why the problem is - technologically interesting, The 

problem of economical implementation of logic circuits having 

two levels of logic has had continuing application in the 

design of data processing machines ranging in complexity from 

EAM machines through the 1401 to STRETCH [ERW 611. For space 

applications see [RP 691. Cost minimization for multiple- 

outputs is an outstanding problem in logic. Muller's encoding 
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[54] of the multiple output problem into an "equivalent" single- 

output problem served to allow the formulation [M 651 RP 691 of 

useful approximations although handicapped by the required 

addition of abundances of don't-care cubes. 

techniques [B 611 was another approach. 

Bartee's tag 

2. New Mathematics. A function G mapping labelled strings of 

0"s and 1's into labelled strings of 0's and 1's may be des- 

cribed as a "function I~ table" 4 listing all the pairs of such 

correspondences. More compact is our singular notation: here 

a function is described by an ensemble or singular cover or 

s-cover of - singular cubes or s-cubes consisting of pairs of 
labelled strings of 0,1, x separated by a vertical line 

segment. We shall illustrate. Suppose that the input lables 

(variables). are 1, 2, 3 ,  4 and output lables a, b, c. Then 

the array on the left of Fig. 1 would define a function G in 

- -  

conventional fashion, while the array on the right would be an 

equivalent s-cover. 

Fig. 1: A singular cover and its interpretation. 

1 2 3 4  a b c  

x l l x  1 x 1  

o x 0 0  x o x  
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1 2 3 4  

x l l x  

The left portion of a singular cube is termed the input part 

a b c  
1 x 1  

value of the output variables a and c are 1, regardless of the 

values of 1 and 4; this cube makes no specification for the 

value of variable b (since it has the value x) for these input 

conditions. A similar interpretation holds for the other 

singular cube given. Those input conditions not defined by the 

singular cover are termed don't care conditions. In our model, 

however, the output part of all s-cubes will consist of 1's and 

x's alone, with the don't-care conditions also explicitly listed 

in this form. Thus a function F is defined by s-covers C and D 

of the care and don't care conditions respectively. - -- 
We say that s-cube' a = al.. . arl bl. e . b contains s-cube 

S 

= c1...crldl...d if a = c or x and d. = c or x; we 

denote this condition [r g . We also say that a is a face 

of g. Thus (Olxl(lxx)~ (Olxxllxl). A vertex consists of a 

singular cube al...arlbl...b wherein all a.'s are 0 or 1 and 

all but exactly one b is x, which one is 1. An s-cube defines 

the set of all vertices contained in any of its cubes. s-cover 

S i i J j 

- 

S 1 

j 

A is said to contain s-cover B if all vertices of B are con- 

tained in cubes of A. If A contains B we write B A. Covers 

are partially ordered by the relation E. Let F be a function 
.. 
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1 2 3 4  

x l l x  

defined by s-covers C and D of care and don't-care conditions; 

we shall say that s-cover E realizes F if C E E [z C U D. 

a b c  
l l x  

Let a - cost be associated with each s-cover, of a very general 

type, (cf. [RW 691). An example would be any linear function 

of the number of inputs and outputs not equal'to x. 

Problem: Given F find a realization of minimum cost. 

E.g . ,  if F is given by the s-covers C , D  shown on the left of 

Fig. 2 then M is a minimum realization. 

The multiple-output extraction algorithm MX is a method for 

solving this problem. To define MX the following definitions 

are made. A s  we have seen, each cover C defines an ensemble 

V of vertices. The cover C also defines an ensemble of cubes 

termed a singular complex or s-complex K being the (unique) 

s-cover K, maximal under set-theoretic inclusion, whose en- 

semble of vertices is V. Clearly, V C E K. An s-cube of 

an s-complex K is said t o  be prime if no other cube of K 

contains it as a face. 
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MX is described in an algorithmic language called 

F-notation [RW 691. This describes MX as a recursively linked 

ensemble of F-functions. One of the first functions in MX is 

the F-function #-algorithm, #alg (CUD), which computes the set 

Z of all prime cubes of the complex K defined by s-cover CUD. 

A prime cube e is sa,id to be an extrema1 if it covers a 

vertex of C (a care vertex) which no other cube of Z does. It 

can be' shown that every minimum M contains e or one of its 

faces. 

solution initially empty ( d ) ,  computes the set E of extremals. 

A second F-function - E (C,D,S), where S is a partial 

If E # d ,  the "distinguished" faces F of E are extracted 

from R and added to S and D, to form a new complex K # F and 

complex defined by s-covers C-F and DUF. F-function - E(C-F, 

DUF, Su F) is then executed again, with the new arguments 

shown. This time a "less-than" operation is performed: given 

s-cubes u and v we say u <v if, roughly speaking, 

(cf [RW 6 9 1 )  cost (u) - >cost (v) and the vertices of 

contained in those of It can be shown that where u, v 

belong to K, and u < v ,  there is a minimum not containing u. 

Thus u is dropped from consideration. 

subsequent executions of E, Z is "appropriately" reduced from 

its non-maximal cubes under < to form Z = < (D,S,Z) . 

u are 

v UD. 

Thus, in the next and 

Hence a new extraction problem is defined and this process 

is repeated either until a solution is obtained or until no new 

extremals appear. In this case a branching function B is 
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executed and a minimum finally obtained, possibly through re- 

cursive execution of - B. 

3. APL-program. A computer program for MX following the 

"F-description", has been written for the IBM System/360 APL 

interactive system [FI 681 using the Iverson notation. This 

program is an interactive one providing typewriter printout of 

intermediate solutions. During execution of .B? for example, 

For fuller explanation see [RW 691. 

manual selection may speed convergence. 

Fig. 3 - A geometrically represented problem. 
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Fig. 4 - A minimum solut ion.  

A 0 0 0 ~ x 1 1 ~ ~ 1  

6 B  0 0 x 1 ~ 1 1 ~ 1 ~  

g c  O x l l x l l ~ x l  

D O l l x x l l ~ l x  

H 0 1 1 x 0 ~ 1 ~ 1 1  

I o o o x o o x ~ 1 1  

K 0 x 1 1 0 0 ~ ~ 1 1  

M ~ 1 1 0 0 0 0 ~ 1 1  
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Appendix B 

In this section of the appendix we offer the present 

version of the formal syntax f o r  abstract F-notations. In 

- this context "abstract" means that no specific semantics are 

given (that is, the set R, the relation =, and the function 

are not specified). 

we shall present the abstract semantics for such abstract 

F-notations and we will describe a specific F-notation, the 

F-notation F/1, in detail. 

Formal Syntax of F-Notations 

An F-notation is specified by giving the following sets 

In the forthcoming report on F-notations 

and mappings: 

an infinite set of symbols called the set of 

function-symbols. 

F -+ N (N = the non-negative integers) called the 
k h A - .  

arity-function; if F E ~  thena (F) is called the 

arity of F and F is said to be of arity a (F). 

an infinite set of symbols called the set of data- 

representatives. 

an equivalence relation on E, called equals. 

the set of equivalence classes of &as determined 

by =, called the set of data-objects. 

a finite subset of F called the set of grimitive- 

function-symbols. - 
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Q a function which assigns to each P in P a total i 
function from 2 into D- (for cx(Pi) = o 
(f ( P . )  is some particular element of D), u is called 

the primitive-function-assignment. 

1 

V an infinite set of symbols called the set of 

variables.. 

Where : 

1. 

2. 

The setsz, l& andJLare disjoint. 

For each n - > 0 the set of elements ofzof arity 

n is infinite. 

(Note: For all "practical purposes", "infinite" can be taken 

to mean, "very large".) 

We define the set of F-expressions - as follows: 

1. If v E V then v E E. 

2. If F E F .and a(F) = 0 then F E E (we say then 

that F is an F-constant or a 0-ary 

free-F-expression, 

3.  If r E R then r E E. 

4. If F E F and a(F) = n > 0 and V~,...~V E V n 

then 

F(vl, ..., v ) is an n-ary free-F-expression). 

F(vly . . . ,v ) E E (we say then that n 

n 
5. If F E F and a(F) = n > 0 and X~,...~X E E n 

then F(X~,...~X ) E E. n 
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We define the set S of F-statements as follows: 

If v E L  and e E E then (v = e) 
CLg 

1. 

is an execution-statement. 

If el' e and e3 E Z  and v E L  then 2 2. 

(el = e2]v = e,) 

and 

are conditional-statements. 

3.  If S is either an execution-statement or a 

conditional-statement then s is an F-statement. 

Given an F-expression e E E let V(e) denote the set of 

elements of V occurring in e. Given an F-statement s let V ( s )  

denote the set of elements of V occurring in s .  Given a string - 
n of F-statements let V ( p )  = U1-l v(si>. = S1"'Sn - 

We define the set of S-formulas as follows: 

Let e be either an F-constant F k P, or a 

free-F-expression F(vlY...,v ) where, again F k P. Let n 

A denote 

1. (v 

2. If 

an 

the null string. 

= e 3 A is an S-formula. 

(v = e f p ) is an S-formula and (w = el) is 

F-statement where w c {v) U V(e) UV(p) 

And let v E V, v k V(e). 

then (v = e p (w = e,)) 

is an S-formula. 
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3.  If (v = e f p ) is an S-formula and 

(el = e21v = es> 

F-statement where 

[resp. (el # e21v = e3) is an 

v(el) U V(e2)U V(e3)Cv(e) U (~(p) - {VI) 
then 

[resp. (v = e p(e f e2]v = e,)) 1 

is an S-formula. 
1 

We define the set of F-formulas as follows: 

If (v = e E p) is an S-formula and (v = e ) is an 1 
F-statement such that 

'[ v =I e E p(v = e,) 1 
is an F-formula. , 

Given an F-formula [v = e E p ] when e = F, an F-constant 

or e = F(v ..., v ) a free-F-expression, define 1' n 

H([ v = e p I )  = {F}. 

(Given an F-formula f we call H(f) the head-symbol of f). 

Given a string fl...f n>l,of F formulas, define n' 
H(f l...f n ) = H(fl...fn-l) U H(fn). 

By an F-algorithm we mean a string of F-formulas f 1"' f ,n - > 1, 

such that, for k = 1, ..., n - 1, 
H(f l...f ) f I  H(fn+l) = d .  n 
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